IOWA STATE UNIVERSITY

Digital Repository

Electrical and Computer Engineering

Conference Papers, Posters and Presentations Electrical and Computer Engineering

2020

The Current Practices of Changing Secure Software: An Empirical
Study

Ameerah Muhsina Jamil
lowa State University, amjamil@iastate.edu

Lotfi ben Othmane
lowa State University, othmanel@iastate.edu

Altaz Valani
Security Compass

Moataz Abdelkhalek
lowa State University, moataz@iastate.edu

Ayhan Tek
Cyber Electra

Follow this and additional works at: https://lib.dr.iastate.edu/ece_conf

b Part of the Information Security Commons, and the Systems and Communications Commons

Recommended Citation

Jamil, Ameerah Muhsina; ben Othmane, Lotfi; Valani, Altaz; Abdelkhalek, Moataz; and Tek, Ayhan, "The
Current Practices of Changing Secure Software: An Empirical Study" (2020). Electrical and Computer
Engineering Conference Papers, Posters and Presentations. 88.

https://lib.dr.iastate.edu/ece_conf/88

This Conference Proceeding is brought to you for free and open access by the Electrical and Computer Engineering
at lowa State University Digital Repository. It has been accepted for inclusion in Electrical and Computer
Engineering Conference Papers, Posters and Presentations by an authorized administrator of lowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

www.manaraa.com

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/ece_conf
https://lib.dr.iastate.edu/ece_conf
https://lib.dr.iastate.edu/ece
https://lib.dr.iastate.edu/ece_conf?utm_source=lib.dr.iastate.edu%2Fece_conf%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=lib.dr.iastate.edu%2Fece_conf%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=lib.dr.iastate.edu%2Fece_conf%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_conf/88?utm_source=lib.dr.iastate.edu%2Fece_conf%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

The Current Practices of Changing Secure Software: An Empirical Study

Abstract

Developers change the code of their software to add new features, fix bugs, or enhance its structure. Such
frequent changes impact occasionally the security of the software. This paper reports a qualitative study
of the practices of changing secure-software in the industry. The study involves interviews with eleven
developers and security experts working on banking software, software for control systems, and software
consultation companies. Through these interviews, we identified that the main security aspects are:
dependency vulnerabilities, authentication and authorization, and OWASP 10 vulnerabilities. The common
techniques used to assess software after code change are: code review, code analysis, testing, and
keywords search. The main challenges that practitioners face are the diversity of the security issues and
the lack of effectiveness of the security assurance tools in detecting vulnerabilities. The study suggests
that developers of secure software need techniques that support effective security assurance of modified
software.

Disciplines
Information Security | Systems and Communications

Comments

This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Jamil, Ameerah Muhsinah, Lotfi ben Othmane,
Altaz Valani, Moataz Abdelkhalek, and Ayhan Tek. “The Current Practices of Changing Secure Software.”
The 35th ACM/SIGAPP Symposium On Applied Computing. Brno, Czech Republic, March 30-April 3, 2020.
DOI: 10.1145/3341105.3373922. Posted with permission.

This conference proceeding is available at lowa State University Digital Repository: https://lib.dr.iastate.edu/
ece_conf/88

www.manaraa.com

http://dx.doi.org/10.1145/3341105.3373922
https://lib.dr.iastate.edu/ece_conf/88
https://lib.dr.iastate.edu/ece_conf/88

The Current Practices of Changing Secure Software

An Empirical Study

Ameerah Muhsinah Jamil
Iowa State University
amjamil@iastate.edu

Moataz Abdelkhalek

Iowa State University
moataz@iastate.edu

ABSTRACT

Developers change the code of their software to add new
features, fix bugs, or enhance its structure. Such frequent
changes impact occasionally the security of the software. This
paper reports a qualitative study of the practices of changing
secure-software in the industry. The study involves inter-
views with eleven developers and security experts working
on banking software, software for control systems, and soft-
ware consultation companies. Through these interviews, we
identified that the main security aspects are: dependency vul-
nerabilities, authentication and authorization, and OWASP
10 vulnerabilities. The common techniques used to assess
software after code change are: code review, code analysis,
testing, and keywords search. The main challenges that prac-
titioners face are the diversity of the security issues and the
lack of effectiveness of the security assurance tools in de-
tecting vulnerabilities. The study suggests that developers
of secure software need techniques that support effective
security assurance of modified software.

CCS CONCEPTS

e Security and privacy — Software security engineering;

KEYWORDS

Secure code, Code change, Secure code change

1 INTRODUCTION

Developers change the code of a software, i.e., modify one or
many parts of the software [30], to introduce new features,
fix existing defects, or improve the maintainability or the
performance of the software. The impact of code changes on
the functionalities of the software has been extensively stud-
ied [15]. These studies focus on the impact of the change on
the functionalities of the software. The common approaches
rely on tests to identify defects created by code change activ-
ities. Since tests do not detect always vulnerabilities, these
approaches do not apply to detect the impact of code changes
on the security of software. For example, assume that we
have a writeToFile function that uses the FileIOPermission
constructor and assumes that a developer changes the value
of Permission State used in the FileIOPermisison from Read
to Unrestricted-see Listing 1. The change may be required
to implement new features, but it gives the applications that

Lotfi ben Othmane
Iowa State University
othmanel@jiastate.edu

Altaz Valani
Security Compass
avalani@securitycompass.com

Ayhan Tek
Cyber Electra
ayhan.tek@cyberelectra.com

can use the method the permission to indirectly write to
files—similar to the set-UID vulnerability [10].

public void changedClass
{
public void writeToFile(String myInput)
{// Do Something
FileIOPermission myPerm =
new FileIOPermission(PermissionState.Read);
// Change to: Unrestricted
myPerm.Demand() ;
// Do Something
13

Listing 1: An example of risky code change.

The techniques to assess the security of software includes
code review, static and dynamic code analysis, and pene-
tration testing. There is, currently, no study that discusses
how the practitioners change secure software safely, i.e., they
produce secure modified-software. This paper aims to ad-
dress that by answering the question: What are the practices
that developers and security experts use to ensure the security of
software affected by code change? To address this question, we
interviewed eleven developers and security experts who par-
ticipate in the security assessment of the software developed
in their respective organizations. Then, we transcribed the in-
terviews, extracted the main information and grouped them
into themes, and analyzed the findings.

The contributions of the paper are:

(1) Identification of security aspects that practitioners look
for when changing secure software.

(2) Identification of the techniques used in the industry to
ensure the security mechanisms do not break after a
software change.

(3) Identification of the challenges that practitioners face
when changing secure-software.

The results of this work could be used by organizations
when developing their secure-code change processes and
by academia to develop solutions and techniques that help
practitioners change secure-code efficiently.

This paper is organized as follows: Section 2 discusses
related works, Section 3 describes the research approach, Sec-
tion 4 presents the results of the study, Section 5 summarizes

www.manaraa.com

the study results and discusses the impacts and limitations
of the study, and Section 6 concludes the paper.

2 RELATED WORKS

There has been extensive work on tracing code changes. For
instance, Kim and Notkin [14] proposed LSdifff, a tool that
infers the systematic structural difference as logic rules. LSdiff
has a good ability to discover exceptions and reduce changes
investigation-time but is limited to cross-language changes.

Hilton et al. [13] studied the trade-offs between speed vs
accuracy, access vs security, and configuration vs simplicity.
They argued that Continuous Integration (CI) improves the
code validation but the thoroughness slows down the assess-
ment of the security of changed code; CI protects the integrity
of the code passing in the integration pipeline but this pro-
tection makes it sometimes difficult to troubleshoot build
failures, and the flexibility in CI configuration and usage
increases system complexity.

In agile development, the developers continuously change
the code of the software which invalidates the security as-
surance of a given release of the software. Ben Othmane
and Ali [18] developed secureAgile, a tool that traces the
impact of code-changes on the security of software. The tool
is designed as an Eclipse plug-in that visualizes the security
assurance case of a given software and the mapping of the
case elements to the software code. Based on the case study,
the tool managed to trace the code changes to security as-
surance artifacts. Hence, it can be used to assess the security
of the software. Abdelkhalek et al. [4] extended the work
by developing a toolset that identifies the impacts of code
changes on the security aspects of the previously assessed
software. The toolset uses callgraph and security assurance
cases techniques to model, respectively, the software code
and security requirements of the software. The preliminary
evaluation of the toolset using three open-source ERP/Ecom-
merce software applications shows the effectiveness of the
approach to identify the code change impacts on the security
of the software.

Vanciu [28] proposed Scoria, a semi-automatic approach
to find architectural flaws, which count for 50% of security
vulnerabilities. They proposed the use of annotations to mark
the security-related code. The tool generates a graph repre-
senting the code and the annotations and allow to query the
graph and identify potential architectural flaws.

Mohamed et al. [17] studied the practices of secure soft-
ware engineering in Malaysia. The authors found a lack of
implementation of secure software practices although there
is high awareness about the importance of these practices
among the practitioners.

Meneely et al. [16] studied the applicability of Linus’s Law
[21] to security-sensitive code-changes by measuring and
analyzing the participation of the developers in reviewing
software. The study shows that more reviews and reviewers
are associated with vulnerable files that contradict Linus Law
but the developer experiences associated with the vulnerabil-
ities follows Linus Law.

Develo .

Study intervigw lnyviting
Preparation questions interviewees
Data Transcribing Conducting
Collection interviews interviews
Data Codin: Group Anal

. g - - - alyze
Analysis interviews :ﬁ:{i;ﬂ the data

Figure 1: Phases of the study.

Bosu et al. [7] and Bosu [6] performed a study on the char-
acteristics of vulnerable code changes. The study found that
careful review should be done to modified files and that code
changes are made often by less-experienced developers. Also,
the study shows that peer-code reviews allow discovering
many types of vulnerabilities and that vulnerabilities that
require extra works are likely to be abandoned.

The work discussed above focuses on the improvement
of the development process, the study on the practice of se-
cure software, the tools supporting secure-code changes, and
the characteristics of vulnerabilities created when changing
secure-code. No study discusses how the practitioners change
secure software safely, i.e., they produce secure modified-
software. Answering these questions helps to design practical
solutions that developers and security experts could use to
be efficient in developing secure software.

3 RESEARCH APPROACH

This study aims to understand the current practices of secure-
code changes in the industry. The data source of the study
comes from the developers and security experts practicing
secure-code change in the industry. Figure 1 depicts the pro-
cess of the study, which has three phases: study preparation,
data collection, and data analysis. The details of each of the
phases are described in the following.

3.1 Study Preparation
The description of the study preparation follows.

Interview protocol. The interview protocol was constructed
using Turner’s guidelines [27]. First, we formulated a set of
interview questions on the research goals and information
from informal discussions with the project sponsor. The ques-
tionnaire was tested by trial runs with team members and
revised based on the feedback. The set of question consist of
six open-ended questions. The open-ended questions enabled
participants to provide detailed responses.

Participants selection. We invited a set of practicing experts
of secure software development from Canada and USA to the
interview. Eleven experts from the banking, control systems
(agriculture and avionic) and software engineering industries
accepted our requests. (And we do not have any dropout
case from these experts.) Table 1 shows the business of the

www.manaraa.com

Table 1: Business performed by each participant.

Participant Business

P1 Software engineering
P2 Banking systems

P3 Security consultation
P4 Control system

P5 Control system

P6 Control system

p7 Banking systems

P8 Software engineering
P9 Security consultation
P10 Education systems
P11 Software engineering

organization of the participants. The participants requested
to keep their identity anonymous.

3.2 Data Collection

The data collection consists of two sub-phases. Conducting
the interviews and transcribing the interviews.

Conducting the interview. We scheduled one-hour meeting
with each of the experts that accepted our invitations. The
meetings were held through Zoom because the experts are
located far from the interviewers. The interviews were con-
ducted by two of the authors. At the beginning of each of the
interviews, the interviewers explained the goal of the project
and process to the interviewees and requested their consent
to record the interview.

Transciption of the interviews. The interviews were tran-
scribed using oTranscribe. !

3.3 Data Analysis

Interview coding. We used the thematic analysis method for
the interview coding [23]. Interview coding uses the interview
transcripts as input and outputs codes that identify all the
aspects mentioned during the interviews. A code is a word or
short phrase identifying the essence of a portion of language-
based or visual data. At the end of this step, we assigned
codes to each of the eleven interview transcripts. For example,
we assigned code OWASP top 10 to text Mostly the, you know
the OWASP top 10 threats, you know SQL injection, cross-site
scripting.” We used Atlas.ti 2 tool to code the interviews.

Data Extraction and Classification. The next step was to
group similar codes to form themes. A theme generalizes a set
of codes belonging to a given concept as a theme. The process
of assigning themes to codes was done for each transcript.
Then, we merged the codes that were semantically similar
across transcripts. Table 2 lists the themes and associated
categories.

Analysis of the results. From the code group, we identified
the information on the software type, security aspects and

oTranscribe: https:/ /otranscribe.com/
2ATLAS.ti: https:/ /atlasti.com/

Table 2: Coding schema.

Code Group

Description

Software type

The type of software developed by the

participant.

Security The security aspect that the participant
aspect & is concerned about when they change
concern their secure-software.
Security The training provided to the people
training involved in the secure code change.
Security The activities performed by the
assessment organization to assess the security of
activities the software.
Secure The secure development process that the
development .
participant use.
process
Code - .
change The activities of changing the code
from request to deployment.
process
Techni .
echniques The techniques used to ensure the
secure-code .
security of secure-code not break.
change
Tools The analysis and testing tools used in
the secure development process.
Process People involved in secure development
participants process and secure code change process.
Participants The roles and responsibilities of the peo-

roles ple involved in the secure development
and secure-code change processes

concerns, security training, security assessment activities,
secure development process, code change process, techniques
to ensure secure-code change, tools for analysis and testing,
and the people involved in the process. We, then, modeled
the relationships among these themes.

4 RESULTS

This section describes the main aspects related to the prac-
tices of ensuring the security of changed code, which are the
types of software that the participants develop, the security
aspects that their organizations consider as important, the
code-change process used in these organizations, the pro-
cesses that they use to ensure the security of the software
does not break after code changes, the tools that the partici-
pants use in the process, and the people involved along with
their roles.
We used Pi to refer to participant i in the interview.

4.1 Software Type

The participants develop and ensure the security of software
for banking, agriculture, avionic, education, and software
engineering industries. Figure 2 shows the number of partici-
pants for each of the software types—each participant works
on one or many software types. We observe that nine par-
ticipants (82%) work on web applications and only one par-
ticipant works on desktop applications. The reason for the

www.manaraa.com

https://otranscribe.com/
https://atlasti.com/

10 i B
87 .
i2)
f,_j 4
E o4l ; .
&
.| 2 2 2 |
0L = T —

T T T T

o o O & © 9 o
LTS T LTS
89 \oxb e,bb *’Q ,@e o \é@

Figure 2: No. of participants develop each of the software
type.

#Participants

Figure 3: No. of participants using each of the program-
ming language.

focus on the security of web applications is because this soft-
ware is often Internet-facing applications, which makes them
target to remote attackers. For instance, the only participant
(P1) that develop desktop application said “You know we
do have some other PC-based applications but for the most
part, you know we are starting on the process of since most
of our applications are developed on, in a web page appli-
cation those are the one we are focusing on right now." We
understand that participant P1 do not ensure the security of
desktop application because the primary focus is web appli-
cations. Also, we observe that two participants are involved
in ensuring the security of legacy mainframe applications.
The participants do not change the code of these applications
but assess the impact of the code-changes to their software
on the mainframe applications that they interact with.

Figure 3 illustrates the programming languages along with
the number of participants that use them. Note that the tools
used to analyze and test the security of software depend often
on the used programming languages.

Table 3: No. of participants concerned with each of the
identified security aspects.

Security aspects # Participants

Authentication & authorization 4
OWASP top 10 4
Dependency vulnerability 3
Access control 2
Buffer overflow 1
Encryption 1

4.2 Security Aspects and Concerns

The types of software that organizations develop drive the
security aspects and concerns that they focus on. Table 3
lists the security aspects and the number of participants that
specified each of them.

Authentication and authorizations. Correct implementation
of authentication and authorization are often difficult but
critical to protect the systems against e.g., credential sniffing,
dictionary attack, and session hijacking attack [19]. Attack-
ers who gain access to a given system can perform fraud,
identity theft, etc. Three out of the four participants that are
concerned about correct implementation of authentication
and authorization about said that they do not deploy the
software, either for the first release or subsequent releases
before making sure that this aspect works perfectly. For in-
stance, participant (P7) said "...even before you make a change,
any security control within that application... is executed when it
is needed, and it has to be executed as intended”.

OWASP top 10. OWASP top 10 [1] includes, according to the
security practitioners, the most ten critical security flaws in
web applications. The top ten vulnerabilities in 2017 are in-
jection, broken authentication, sensitive data exposure, XML
external entities (XXE), broken access control, security miscon-
figuration, cross-site scripting (XSS), insecure deserialization,
using components with known vulnerabilities, and insuffi-
cient logging and monitoring [1]. Four participants stated
that the OWASP top 10 are the main security concerns and
that they take serious effort to ensure that their software
does not have these vulnerabilities. Note that the participants
specified dependency vulnerabilities and authentication and
authorizations aspects separately although they are among
the OWASP top 10 because they are important issues for
them.

Dependency vulnerabilities. Each software is composed of
a set of components (in the form of binaries, libraries, source
code, or APIs [9]) that depend on each other [25]. These
components could be internal or external, i.e., developed by
the team or not. The external components of a given software
could include vulnerabilities that impact the security of the
software, known as dependency vulnerabilities. Three of the
participants were concerned about the vulnerabilities in the
direct and also indirect dependencies.3

SIndirect dependencies are dependencies of either direct dependencies or
indirect dependencies.

www.manaraa.com

Access Control. Access control mechanisms are used to en-
sure that the usage of a system complies with a set of access
policies [24]. Access control vulnerabilities include bypassing
access control checks, the elevation of privileges, and meta-
data manipulation [20]. Two participants were concerned
about this aspect. For instance, participants P10 stated: "I
focus on permissions of users: can they access, you know, certain
areas in the application? Also, what sort of data are they access-
ing in those particular places?”. The participant considers that
the aspect is critical for learning management systems be-
cause flaws in such systems would allow tampering with the
students” grades or accessing unauthorized information.

Buffer overflow. Buffer overflow occurs when the size of a
destination buffer is smaller than the size of input data, which
may allow overwriting the data adjacent to the buffer[3].
Attackers could exploit the vulnerability to e.g., gain control
of a system or execute arbitrary code with elevated privileges.
The vulnerability concerns one participant because they write
software using the non-memory- safe language C.

Encryption. Encryption is used to implement several of the
security features. One of the participants (P11) developed
software that stores and manages encrypted data. The par-
ticipant fears that potential attackers exploit flaws in the
implementation of the mechanisms to access the secret data.
Breaches in the data storage can damage the reputation of
the organization.

4.3 Security Training

Four participants reported that they have/had formal train-
ing in developing secure software. Participant P1 reported
that their organization trains the developers on preventing
the OWASP top 10 security vulnerabilities [1]. Advanced de-
velopers in their organization receive, in addition, security
Net training. Participant P2 reported that their organiza-
tion trains the developers on a Static Application Security
Testing (SAST) tool that they use to detect vulnerabilities.
Participant P7 reported that their organization has security
training tailored to each role in the organization. For instance,
developers are trained on secure coding standards (defensive
programming) and preventing OWASP top 10 vulnerabili-
ties; architects are trained on threat modeling, designing the
architecture for secure applications; project managers are
trained on security management; and quality assurance team
members are trained on verifying the security of software.
Participant P9 reported that they use a secure development
process, which includes secure coding standards. The or-
ganization outsources its software development. Similar to
their developers, contractor teams receive training on the
development process and rules to ensure they deliver secure
software.

4.4 Security Assessment Activities

The participants reported six security analysis activities: static
code analysis, dynamic code analysis, object code analysis,
software composition analysis, penetration testing, and code
review.

Table 4: No. of participants performed each type of security
assessment.

Security assessment # Participants

Penetration testing

Static analysis

Dynamic analysis

Code review

Software composition analysis
Object code analysis

= = = U1 00 @

Static Application Security Testing (SAST) activity, i.e, ana-
lyze the source code to identify vulnerabilities, is performed
by nine out of the eleven participants. According to partici-
pant P2, the activity is performed in the development phase
(every developer runs the SAST tool on their code when they
wish) which allows them to identify vulnerabilities and fix
them in the early stage of the development. The participant
expects that the cost of fixing vulnerabilities in the early
stages is much smaller than fixing them in later stages of the
software life cycle phases.

Dynamic Application Security Testing (DAST) activity, i.e.,
execute the code and assess the software for security vulnera-
bilities [12] is performed by five participants.

Object code analysis is a structural coverage analysis per-
formed on the object code. Only participant P5 reported per-
forming the activity. They stated: “We do object code analysis on
level A stuff”. Which followed the DO-178C’s requirements|[2]
for object code verification. Participant P5 applied this analy-
sis to inspect the output of the code.

Using components with known vulnerabilities is among
the OWASP top 10 vulnerabilities in 2017. Software compo-
sition analysis activity is used to assess the exposure of a
given software to known vulnerabilities by identifying the
components of the software along with their licenses and
related known security vulnerabilities [22]. Four of the eleven
participants reported that they perform the analysis to en-
sure they do not deploy software that includes vulnerable
third-party components.

Penetration testing [11] is a manual activity for identifying
vulnerabilities in software and exploiting them. The activity
is performed by eight participants. Two participants (P4, P6)
do penetration testing for security-critical applications. Par-
ticipant P2 performs full tests on the code-base of the first
release of a given application (e.g., ensuring file permission is
correct) and assess the risks associated with each subsequent
code-changes before deciding on the tests to perform on the
application.

Code review is reading the code line by line to find flaws
and check its compliance with the coding standards. The
activity is performed by four participants. Participant P7
performs code review from the beginning throughout the
development process while participant P6 does peer review
at the end of each release of the given software.

www.manaraa.com

4.5 Secure Development Process

Developing secure software requires the integration of secu-
rity activities into the development process [26]. The inter-
view participants reported that they use a set of security poli-
cies and standards to produce secure software. These include
secure coding standards, application security assessment stan-
dards, security testing standards, and rules for deploying
applications—e.g., software are not allowed to be deployed to
the production environment if they include known critical
vulnerabilities.

Some of the interviewed participants described the pro-
cesses that they use to ensure the security of their modified
software. For instance, Figure 4 depicts the vulnerability fix-
ing process used by Participant P2 organization, a bank. The
organization uses a static and dynamic code analysis tools
to check, on-demand, their application code for security vul-
nerabilities. The developers fix the vulnerabilities that are
familiar with and request assistance from the security team
to fix the rest of the identified vulnerabilities. Participant P7
works also in banking but their organization uses another
process. They reported that their development process incor-
porates security activities in all the development life-cycle
phases: they perform a preliminary software risk analysis
and elicit the security requirements in the requirements elici-
tation phase; perform security architecture, threat modeling,
and security test planning in the design phase; perform code
review and analyze the code using DAST and SAST tools
to identify language-level vulnerabilities in the development
phase; perform security testing including penetration testing
in testing phase; ensure secure deployment and verify the
configuration of the environment in the deployment phase.

Participant P4 reported that their team has secure by design
process that integrates secure software development practices.
The team evaluates the criticality of each modified application
and assesses the business impacts of potential compromises
of the given application. They evaluate the criticality of these
applications and selects the appropriate security activities
(code analysis, architectural design review, vulnerability test,
and penetration testing) accordingly.

Participant P9 reported that their organization incorpo-
rates three security activities into their software development
process, which are: elicit the security requirements of the
given application and design solutions that address them;
perform source-code analysis and testing to check the code
for vulnerabilities; and monitor the deployed applications to
identify potential attacks.

Participant P6 works on avionic control systems. The team
does not include security activities in their development pro-
cess because the systems that they develop need to comply
with a well-specified set of requirements and are supposed to
work in closed network systems. The team, however, works
on including secure-coding standards, security requirements,
language-based vulnerabilities testing, and penetration test-
ing for their software into their development processes.

Developer
writes
the code

v

Analyze
and test
the code

v

Identify N .
common o Get assitance

> vulnerability > from

security team

v Yes

Fix the
vulnerability

v

No

Only
low-critical
vulnerability

left

v Yes

Deploy

Figure 4: Example of secure development process in partic-
ipant P2 organization.

4.6 Code Change Sub-process

Changing the code of deployed software is commonly per-
formed by nine participants. The remaining two participants
(P5 and P6) do not frequently change their software. These
participants work on safety-critical systems, such as flight
control systems. The participants usually have their soft-
ware certified by a third-party before having them deployed.
Changing this software is costly and risky. It implies often
rewriting the software from scratch, with different ideas and
constraints.

The interviewees reported that they change their code
to enhance their software, address small change requests,
refactor the code, or address new business or legal policies.
These changes could be ad-hoc or periodic, i.e., once a week.

Figure 5 depicts the generic process of code change used
by the organizations of six of the participants. The process
starts with a change request followed by an assessment of
the security risks. The developers, then, change the software
and test it. They make the software available for deployment
if the tests are successful and fix the code and iterate on the
tests otherwise. The participants apply the process differently.
For instance, the organization of participant P7 has a change
control board that reviews the changed code, evaluates the
rationale for changing the code, checks the test results, and
verifies if the changed code introduces new vulnerabilities;

www.manaraa.com

Change
request

v

Risk
assessment

v

Developer
changes
the code

v

Test the
changed
code

v

Fix the Is the test
code success

v Yes

Deploy

Figure 5: General process of changing code.

Table 5: No. of participants performed each technique to
ensure secure-code change.

Techniques # Participants
Review 8
Code analysis 5
Testing 5
Keywords search 1

and three participants (P3, P7, P9) have post-production oper-
ation where they monitor the code changes after deployment.

4.7 Techniques to Ensure Secure-code Change

The participants use four techniques to ensure secure-code
change: (1) review, (2) code analysis, (3) testing, and (4) Key-
words search. Discussions on each of these techniques follow.

Review. Eight participants reported that they perform code
review to ensure that the changed code does not break the
existing security mechanisms that the software implements.
Three out of the eight participants review only the changed
pieces of code because they find it impossible to review the
code-base of their large applications regularly. In addition,
two of the eight participants perform security manual-review
and two participants perform security peer-review. Partici-
pant P9 stated that having checklists of do and don’t help
perform the code review. They stated that although code re-
views are good in ensuring that the code is written according
to the standards, and the code did not introduce new vulner-
abilities they are labor-intensive, hard to do, very expensive,
and take a long time to complete.

Code Analysis. Five participants reported that they perform
SAST and/or DAST on the software that they change. Some
tools that the participants use in this assessment activity are:
Fortify, CodeSonar, and Lint.

Testing. Five participants reported that they perform func-
tional and penetration testing on the modified software. Among
the five participants, participant P9 uses a test-driven devel-
opment method. Therefore, they perform all the unit tests
and integration tests on the modified code. They perform, in
addition, a penetration testing on the changed code. Partici-
pant P2 assesses the risks of their code-changes and have the
project manager decides on whether to perform penetration
tests on the changed code-base or not.

Participant P2 suggested preparing a checklist that in-
cludes a list of criteria to verify the quality of the penetra-
tion testing, which would include the security features that
should be tested, e.g., file permission and authorization. The
risk manager verifies if the results of penetration testing of
a given software comply with the checklist and provides ap-
proval for deployment to the production when appropriate.

keyword search. Participant P11 reported that they use key-
words to locate code changes that require code reviews by
security experts. The participant specifies the keywords that
need to be checked in the configuration file of their tool. The
tool scans the source code files of the given software and
uses the keywords to identify security-relevant code changes.
The developers could add a special annotation (considered
as keywords) to their code chunks to alert security experts to
review the changed code.

4.8 Tools for Analysis and Testing

Table 6 lists the security tools that are used by the participants
along with the number of participants that use each of them.

The participants reported that choosing the perfect tools
is difficult because each tool has specific purpose and set of
functionalities, and addresses a specific set of vulnerabilities.
Several factors need to be considered in choosing the tools
including the programming languages, the used frameworks,
the required level of experience of the user, and the age of the
application. For instance, participant P9 states: "There’s a lot of
different languages right! Especially, I have seen a lot of shops, each
shop supports different languages, environments, [...] frameworks,
required level of experience, and age of the applications. [...] [There
are] different security tools that work the best for each of these.”
The participant suggested having a score sheet that helps to
select the appropriate tools for the given task based on their
support of the factors that they cited. The scores should be
given based on an objective evaluation and should include
ease of use, ease of deployment, budget, etc.

4.9 Participants Roles

Table 7 lists the different roles that contribute to producing
secure-code change that was reported by the participants.

www.manaraa.com

Table 6: Tools and usage.

Table 7: Position and role.

Tools Usage # Participants
Veracode Static analysis
Fortify Static analysis
SonarQube Static analysis
Coverity Static analysis
CodeSonar Static analysis
FindBugs Static analysis

Lint Static analysis

— N R == N WW

Splint Static anaysis
ToolPAL Static analysis
Checkmarx Static. analys.is,

security testing
Sonatype Component analysis
Dependency Vulnerability analysis
Check

AppScan Web app security testing 1
Arachni Web app security testing 1
Weblnspect Web app security testing 1
Jest JavaScript testing 1
Burp Suite Penetration testing 3
Keyword tool Vulnerability testing 1

1

SD Element Understand requirements

410 Challenges

The participants reported three major challenges that they en-
counter when developing secure software. The details about
these challenges follow.

Diversity of security issues. The participants described dif-
ferent processes, activities, and tools for security assurance
and different processes and techniques for ensuring secure
code change. The activities, tools, and techniques were devel-
oped to address the different security issues (e.g., design-level
security needs, language-based vulnerabilities, implementa-
tion of cryptographic solutions issues) that the developers and
security experts encounter when developing secure software.
Therefore, each organization chooses a set of assessment activ-
ities, techniques, tools, and processes to address the security
issues that their security experts encounter when developing
a secure software for their businesses. This is expressed well
by participant P9 who stated, when we asked them “what
should be done to ensure the security of code change?” with "I
don’t think I have ever seen anything the silver bullet”.

Effectiveness of security assurance tools. Most of the partic-
ipants (eight) stated that they use static code analysis tools.
These tools, according to the participants, have, however, a
high rate of false positives. This problem demotivates the de-
velopers on using the tools because they would need to spend
a lot of time filtering the issues that the tools report. Partici-
pant P9 said “source code analysis has a very high false-positive
rate have a lot of noise which developers hate.”

Ignoring human factors. Organizations tend to focus on the
technical aspects and ignore the human factors although de-
veloping secure software requires the collaboration of people

Positions Roles #
Partic-
ipants

Write the code
Run unit tests 10
Perform code analysis
Provide guideline for secure
coding standards
Develop security training
Monitor the the code for
Security team vulnerabilities 6
Assist the developers in
addressing vulnerabilities
Evaluate the risk of using new
technologies
Integrate security in the design

Developer

Architect Support the developers in fixing 5
security vulnerabilities

QA Perform the required security 3
tests

Ri Assess security risks

isk .

Manager Approve/Reject requests to 3
deploy software

Technology

asset Own the given application 3

owner

Project man- Manage the given project 2

ager

Audit team Perfqrm audit . 1
Archive code analysis results

Change Perform impact analysis 1
manager

Development Provide technical or input 1
manager feedback

involved in the process. For instance, participant P9 formu-
lated that as follows: "I think people, especially security people,
IT people, in general, tend to choose technology, there are no people,
there is no relation or feeling. Those are [...] the very few things
that you have to consider when you put [..] an Appsec program”.
Effective communication is essential to the success of a se-
cure change process. The developers would try to bypass the
quality control gate (which is the security code analysis) if
they find it difficult, ineffective, increase the workload, and
may delay their projects—and may delay software releases.
Security experts should get feedback from the developers
about the effectiveness of the code analysis tools they employ,
communicate with the other stakeholders and try to improve
the processes, the guidelines, the tools, or the training of the
developers.

5 DISCUSSIONS

This section summarizes the results of the study and discusses
the impacts and limitations of the study.

www.manaraa.com

el
based

on . ..
Security training

ey
L qoNe
has + ‘y

— Participants roles

Techniques for use
secure-code change

y Yse
> Security aspects concerned Secure development include Secure-code
and concerns process » change sub-process

+ use

Security assessment use >

activities

+ to assess

Software type

Tools for analysis <
and testing

Figure 6: Model of the secure-code change concepts and the relationships among these concepts.

51 Summary

Figure 6 shows the themes/concepts extracted from the study
and the relationship between these themes/concepts. The
figure shows that the secure development process includes a
secure-code change sub-process. The processes are commonly
used for several application types including Web applications
and control system software. The people participating in
the process assume specific roles and may have appropriate
training that is developed based on the security aspects of
concern to the organizations. Some of the participants in
the secure development process and secure-code change sub-
process use a set of tools to assess the security of the software.
The assessment activities and techniques for both process
and sub-process verify that the aspects and concerns are
addressed.

We observe from the study that code review is the most
used technique to ensure the secure-code change (8 partic-
ipants) followed by code analysis and penetration testing,
each is practiced by five participants. We expected that many
organizations would use keywords search but we found only
one participant (P11). In addition, we observe that three par-
ticipants:P2, P7, and P9 perform the three techniques: code
review, code analysis, and penetration testing. These three
participants mentioned that they have/had training on devel-
oping secure software.

5.2 Impact of the Study

There are extensive work on techniques, tools, and processes
to develop a secure development process, including the devel-
opment of secure software using the agile approach [5] and
identification of characteristics of vulnerable code change [7].
This study enumerates the security aspects that the develop-
ers address when they modify their software.

The study revealed that dependency vulnerabilities, au-
thentication and authorization, and OWASP top 10 are the
main aspects that the participants consider when they change
secure-software,* Improving the techniques and tools to ad-
dress these aspects should have important impacts on efficient
and effective maintenance of secure software.

4They are invoked by most of the participants-see Table 3

Recall that the main techniques that practitioners use to
ensure secure-code change are: code review, code analysis,
penetration testing, and keywords search. We observe that
most of the participants rely on code analysis and penetration
testing to ensure the security of modified software. They limit
the use of manual code review to security-sensitive code
segments: the segments that are flagged by the keywords
search algorithms. This use of security assessment tools is
risky. For example, the assessment may fail to detect a change
that breaks the authorization mechanisms simply because the
new code does not include the keywords.

In addition, we found that the organizations that develop
Web applications ensure the security of their modified soft-
ware but the organizations that develop control systems do
not. The community should raise awareness of the compa-
nies that develop cyber-physical systems about the impact of
security vulnerabilities.

5.3 Threats of Validity

We discuss in the following the limitations of the study, which
we classify into construct validity, internal validity, conclusion
validity, and external validity threats [8, 29].

Construct validity. This category concerns the threats to the
relation between the performed study and the goal of the
study. To address this validity, we performed a literature
review, designed an interview protocol and tested it with
some experts. In addition, we collected the information from
eleven participants who have different roles and are located
in different cities, which gives confidence in the stability of
the collected data.

Internal Validity. The validity concerns the relationship be-
tween the study and its results. At the beginning of each of
the interviews, we tell the interviewee the aim of the inter-
view, which should help in ensuring that the participants and
interviewer share the same goal. The diversity of the roles
of the participants may, however, impact the relationship
between the study and results.

Conclusion validity. This validity concerns the ability to
draw correct conclusions from the results of the study. To
address these threats, the main author discussed the codes
and themes with the second author to reduce the subjectivity
of the results.

www.manaraa.com

External Validity. External validity concerns the generaliza-
tion of the outcomes of the study. The participants in the
study were security experts and developers in eleven organi-
zations. While most of them are from the software engineer-
ing industry, we believe that they bring diverse experience
that supports generalizing the results.

6 CONCLUSION

This paper reports about the current practices on secure-code
change in the industry. In this study, we found that organi-
zations (four out of eleven) provide formal training of their
developers on developing secure software. We conclude that
(1) there are six security aspects and concerns; dependency
vulnerabilities, authentication and authorization, access con-
trol, OWASP top 10, encryption, and buffer overflow, (2) the
common security assessment activities are static code anal-
ysis, dynamic code analysis, object code analysis, software
composition analysis, penetration testing, and code review,
(3) there are four techniques to ensure secure-code changes;
review, code analysis, testing, and keyword search, and (4)
there are eight people involved in the process namely, devel-
oper, development manager, project manager, risk manager,
security team, audit team, QA, and architect.

ACKNOWLEDGMENT

The authors thank Mike Johnson and Jim McClurg from John
Deere for the thorough discussions along the execution of the
research. They also thank the anonymous participants in the
study for their contributions. This project is funded partially
by a grant from John Deere.

REFERENCES

[1] [n. d.]. OWASP Top 10-2017. https://www.owasp.org/index.php/Top_
10-2017_Top_10.

[2] [n. d.]. Source Sode to Object Code Traceability Study - adacore. https:
/ /www.adacore.com/uploads/books/pdf/traceability-sample.pdf.

[3] 2019. What Is a Buffer Overflow? Learn About Buffer Overrun Vul-
nerabilities, Exploits & Attacks. https://www.veracode.com/security/
buffer-overflow.

[4] M. Abdelkhalek, L. Ben Othmane, and A. Jamil. 2019. Identification of
the Impacts of Code Changes on the Security of Software. In Proc. of
the IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), Vol. 2. 569-574.

[5] L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava. 2014. Extend-
ing the Agile Development Process to Develop Acceptably Secure Soft-
ware. IEEE Transactions on Dependable and Secure Computing 11, 6
(Nov 2014), 497-509.

[6] A. Bosu. 2014. Characteristics of the Vulnerable Code Changes
Identified Through Peer Code Review. In Companion Proceedings
of the 36th International Conference on Software Engineering
(ICSE Companion 2014). 736-738.

[7]1 A.Bosu,]. C. Carver, M. Hafiz, P. Hilley, and D. Janni. 2014. Identifying the
Characteristics of Vulnerable Code Changes: An Empirical Study. In Proc.
of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2014). 257-268.

[8] Daniela S. Cruzes and Lotfi ben Othmane. 2017. Empirical Research for
Software Security: Foundations and Experience. Taylor & Francis Group,
LLC, Chapter Threats to Validity in Software Security Empirical Research,
275-300.

[9] IEEE Cybersecurity. 2015. Understand How Integrat-
ing External Components Changes Your Attack Sur-
face. https:/ /cybersecurity.ieee.org /blog/2015/11/13/

understand-how-integrating-external-components-changes-your-attack-surface/.

10

[10] W. Du. 2019. Computer Security: A Hands-on Approach. Wenliang Du.
https:/ /books.google.com/books?id=spOJxAEACAA]

[11] P. H. Engebretson and D. Kennedy. [n. d.]. The basics of hacking and
penetration testing. Syngress/Elsevier.

[12] A. Ghahrai. 2018. Static Analysis vs Dynamic Analysis
in Software Testing. https:/ /www.testingexcellence.com/
static-analysis-vs-dynamic-analysis-software-testing /.

[13] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. 2017. Trade-offs
in Continuous Integration: Assurance, Security, and Flexibility. In Proc.
of the 2017 11th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2017). 197-207.

[14] M. Kim and D. Notkin. 2009. Discovering and Representing Systematic
Code Changes. In Proc. of the 31st International Conference on Software
Engineering (ICSE '09). 309-319.

[15] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. 2013. A sur-
vey of code-based change impact analysis techniques. Software: testing,
verification and reliability 23, 8 (December 2013), 613-646.

[16] A. Meneely, A. C. Rodriguez Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis. 2014. An Empirical Investigation
of Socio-technical Code Review Metrics and Security Vulnerabilities. In
Proc. of the 6th International Workshop on Social Software Engineering
(SSE 2014). 37-44.

[17] S.FE. P. Mohamed, Fauziah. Baharom , A. Deraman, J.Yahya, and H. Mohd.
2016. Secure software practices among Malaysian software practitioners:
An exploratory study. AIP Conference Proceedings 1761, 1 (2016), 020086.
https:/ /doi.org/10.1063/1.4960926

[18] L. B. Othmane and A. Ali. 2016. Towards Effective Security Assurance for
Incremental Software Development the Case of Zen Cart Application. In
Proc. of the 11th International Conference on Availability, Reliability and
Security (ARES). 564-571.

[19] OWASP. 2017. OWASP Top 10 Application Security Risks —
2017. https://www.owasp.org/images/7/72/OWASP_Top_10-2017_
%28en%29.pdf.pdf.

[20] OWASP. 2017. OWASP Top 10 Application Security Risks — 2017. https://
www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control.

[21] Eric S. Raymond. 2001. The cathedral & the bazaar: musings on Linux
and open source by an accidental revolutionary. OReilly.

[22] R. Rymon. 2019. Software Composition Analysis Explained.

[23] J. Saldana. 2015. The coding manual for qualitative researchers. Sage
Publications.

[24] R.S. Sandhu and P. Samarati. 1994. Access control: principle and practice.
IEEE Communications Magazine 32, 9 (Sep. 1994), 40-48.

[25] A. Sharma, P. S. Grover, and R. Kumar. 2009. Dependency Analysis for
Component-based Software Systems. SIGSOFT Softw. Eng. Notes 34, 4
(2009), 1-6.

[26] E. t Mougoue. 2019. What is the secure software development
life cycle (SDLC)?: Synopsys. https:/ /www.synopsys.com/blogs/
software-security/secure-sdlc/

[27] D.W. Turner. 2010. Qualitative interview design: a practical guide for
novice investigators. The Qualitative Report.

[28] R. Vanciu and M. Abi-Antoun. 2013. Finding architectural flaws using
constraints. In Proc. of the 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 334-344.

[29] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjoorn
Regnell, and Anders Wesslén. 2000. Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers, Norwell,
MA, USA.

[30] A.T.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. 2004. Predicting
source code changes by mining change history. IEEE Transactions on
Software Engineering 30, 9 (Sep. 2004), 574-586.

www.manaraa.com

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.adacore.com/uploads/books/pdf/traceability-sample.pdf
https://www.adacore.com/uploads/books/pdf/traceability-sample.pdf
https://www.veracode.com/security/buffer-overflow
https://www.veracode.com/security/buffer-overflow
https://cybersecurity.ieee.org/blog/2015/11/13/understand-how-integrating-external-components-changes-your-attack-surface/
https://cybersecurity.ieee.org/blog/2015/11/13/understand-how-integrating-external-components-changes-your-attack-surface/
https://books.google.com/books?id=spOJxAEACAAJ
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
https://doi.org/10.1063/1.4960926
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://www.synopsys.com/blogs/software-security/secure-sdlc/

	The Current Practices of Changing Secure Software: An Empirical Study
	Recommended Citation

	The Current Practices of Changing Secure Software: An Empirical Study
	Abstract
	Disciplines
	Comments

	Abstract
	1 Introduction
	2 Related works
	3 Research approach
	3.1 Study Preparation
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 Software Type
	4.2 Security Aspects and Concerns
	4.3 Security Training
	4.4 Security Assessment Activities
	4.5 Secure Development Process
	4.6 Code Change Sub-process
	4.7 Techniques to Ensure Secure-code Change
	4.8 Tools for Analysis and Testing
	4.9 Participants Roles
	4.10 Challenges

	5 Discussions
	5.1 Summary
	5.2 Impact of the Study
	5.3 Threats of Validity

	6 Conclusion
	References

